Force-velocity relationship and biochemical-to-mechanical energy conversion by the sarcomere.

نویسندگان

  • A Landesberg
  • S Sideman
چکیده

The intracellular control mechanism leading to the well-known linear relationship between energy consumption by the sarcomere and the generated mechanical energy is analyzed here by coupling calcium kinetics with cross-bridge cycling. A key element in the control of the biochemical-to-mechanical energy conversion is the effect of filament sliding velocity on cross-bridge cycling. Our earlier studies have established the existence of a negative mechanical feedback mechanism whereby the rate of cross-bridge turnover from the strong, force-generating conformation to the weak, non-force-generating conformation is a linear function of the filament sliding velocity. This feedback allows the analytic derivation of the experimentally established Hill's equation for the force-velocity relationship. Moreover, it allows us to derive the transient length response to load clamps and the transient force response to sarcomere shortening at constant velocity. The results are in agreement with experimental studies. The mechanical feedback regulates the generated power, maintains the linear relationship between energy liberated by the actomyosin-ATPase and the generated mechanical energy, and determines the efficiency of biochemical-to-mechanical energy conversion. The mechanical feedback defines three elements of the mechanical energy: 1) external work done; 2) pseudopotential energy, required for cross-bridge recruitment; and 3) energy dissipation caused by the viscoelastic property of the cross bridge. The last two elements dissipate as heat.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AHEART April 47/4

Landesberg, Amir, and Samuel Sideman. Force-velocity relationship and biochemical-to-mechanical energy conversion by the sarcomere. Am J Physiol Heart Circ Physiol 278: H1274–H1284, 2000.—The intracellular control mechanism leading to the well-known linear relationship between energy consumption by the sarcomere and the generated mechanical energy is analyzed here by coupling calcium kinetics w...

متن کامل

Instantaneous force-velocity-length relationship in diaphragmatic sarcomere.

The simultaneous analysis of muscle force, length, velocity, and time has been shown to precisely characterize the mechanical performance of isolated striated muscle. We tested the hypothesis that the three-dimensional force-velocity-length relationship reflects mechanical properties of sarcomeres. In hamster diaphragm strips, instantaneous sarcomere length (SL) and muscle length were simultane...

متن کامل

Effects of cross-bridge compliance on the force-velocity relationship and muscle power output

Muscles produce force and power by utilizing chemical energy through ATP hydrolysis. During concentric contractions (shortening), muscles generate less force compared to isometric contractions, but consume greater amounts of energy as shortening velocity increases. Conversely, more force is generated and less energy is consumed during eccentric muscle contractions (lengthening). This relationsh...

متن کامل

Evidence that the velocity of sarcomere shortening in single frog atrial cardiac cells is load dependent.

Recent experiments using laser diffraction techniques to determine the time course and extent of sarcomere shortening in thin bundles of cardial tissue have given results which suggest that the velocity of sarcomere shortening in cardiac muscle is independent of the developed force (Nassar et al., 1974; Krueger and Pollack, 1975). However, the anatomical complexity of the intact tissue preclude...

متن کامل

Numerical Study of the tongue geometry effects on the cavitation and performance of a centrifugal pump in off-design conditions

In this study, the effects of the volute tongue geometry variation on the head, efficiency, velocity distribution and cavitation structure of a centrifugal pump in the steady flow behavior under off-design conditions have been investigated. Numerical simulation modeling based on the  turbulence model with a hybrid grid is used to simulate the flow within the modeled pump. The flow is simulated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 278 4  شماره 

صفحات  -

تاریخ انتشار 2000